Chemistry 221
 The Basics of Balancing Chemical Equations

Step 1: Write the unbalanced equation using the correct chemical formula for each reactant and product. Keep organized and make a table underneath the reactants and products with the number of elements involved in the reaction.
Step 2: Find suitable coefficients, which are the numbers placed before chemical formulas to indicate how many units of each substance are required to balance the equation.
Step 3: Reduce coefficients to their smallest whole-number values, if necessary, by dividing them by a common divisor
Step 4: Check your answer to make sure that the numbers and kinds of atoms are the same on both sides of the equation.

Example: BALANCING EQUATIONS

Step 1: Write the unbalanced equation using the correct chemical formula for each reactant and product. Make a table with the total number of elements involved in the reactants and products of a reaction.

Reactants
$\mathrm{Fe}+\mathrm{O}_{2}$
:---
$\mathrm{Fe}_{2} \mathrm{O}_{3}$

Number of units of each substance

Reactants side		Products side	
Fe	1	Fe 2	
0	2	0	3

Step 2: Find suitable coefficients, which are the numbers placed before formulas to indicate how many formula units of each substance are required to balance the equation.

\checkmark Remember: if there is no number in front of the formula, it means there is 1 present.
\checkmark Remember: you can only add coefficients, not subscripts.
\checkmark Remember if there is a Subscript such as \mathbf{O}_{2}, it means that there are 2 present.
\checkmark Remember: if there is a coefficient in front of a formula such as $\mathbf{3 O}_{2}$, that means that you multiply the 3 times 2 , which equals 6 .
\checkmark Make sure you keep track of the coefficients and change them in your table.
\checkmark Hint: Work with H's last.
\checkmark Hint: Start changing the coefficients in front of the most complex formula and end with the simplest formula. For example, change the coefficient in front of $\mathbf{F e}_{2} \mathbf{O}_{3}$ instead of Fe because it is easier to change the $\mathbf{F e}$ at the end.

Chemistry 221
 The Basics of Balancing Chemical Equations

Step 3: By looking at this table it is obvious that there are unequal numbers of Fe and O in the products and reactants. Start with trial and error by changing the coefficients to the smallest whole-number values possible to attempt to make the amount of Fe and O the same on both sides.

- From the table, you know that there needs to be at least 3 O's on the Products side to make it equal to the O's on the Reactants side. But there is no way to put a coefficient in front of the Reactants to make it exactly equal to 3 .
- Therefore, you have to find a common factor. A common factor of $\mathbf{3} O$ and $\mathbf{2} \mathrm{O}$ is $\mathbf{6}$. To do this put a $\mathbf{2}$
 Don't forget to change your table to keep track of reactants and products.
Reactants

$\mathrm{Fe}+\mathrm{O}_{2}$$\quad \rightarrow \quad$| Products |
| :---: |

Reactants side		Products side		
Fe	1	Fe	2	4
0	2	0	3	6

- Next, balance for O on the reactants side by putting a 3 in front of the \mathbf{O}_{2}; the new number of oxygen is $\mathbf{3}$ $x 2$, which equals 6 .
- You are almost done. Now balance for $\mathbf{F e}$ on the reactants side by placing a 4 coefficient to get $\mathbf{4 F e}$.

Final balanced equation

Number of units of each substance

Reactants side		Products side			
Fe	$\mathbf{1}$	4	Fe	\mathbf{z}	4
\mathbf{O}	\mathbf{Z}	6	0	3	6

Step 4: Lastly, check to make sure there are equal numbers of substance on each side.

